Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 349: 123905, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38580062

ABSTRACT

With the acceleration of air cleaning activities in China, air pollution has entered a new stage characterized by seasonal interplay and predominance of fine particulate matter (PM2.5) and ozone (O3) pollutants. However, the differing peak seasons of these two pollution preclude the use of a unified indicator for air pollution complex. Given that peroxyacetyl nitrate (PAN) originates from secondary formation and persists under low-temperature conditions for extended periods, it is vital to determine whether its concentration can be used as an indicator to represent air pollution, not only in summer but also in winter. Here, PAN observational data from 2018 to 2022 for Beijing were analyzed. The results showed that during photochemical pollution events in summer, secondary formation of PAN was intense and highly correlated with O3 (R = 0.8), while during PM2.5 pollution events in winter, when the lifetime of PAN is extended due to the low temperature, the PAN concentration was highly consistent with the PM2.5 concentration (R = 0.9). As a result, the PAN concentration essentially exhibited consistency with both the seasonal trends in the exceedance of air pollution (R = 0.6) and the air quality index (R = 0.8). When the daily average concentration exceeds 0.5 and 0.9 ppb, the PAN concentration can be used as a complementary indicator of the occurrence of primary and secondary standard pollution, respectively. This study demonstrated the unique role of PAN as an indicator of air pollution complex, highlighting the comprehensive ability for air quality characterization and reducing the burden of atmospheric environment management.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Ozone , Particulate Matter , Peracetic Acid , Peracetic Acid/analogs & derivatives , Seasons , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring/methods , Particulate Matter/analysis , Ozone/analysis , Peracetic Acid/analysis , Beijing , China
2.
Environ Sci Technol ; 56(13): 9325-9334, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35704858

ABSTRACT

The formation and decomposition of peroxyacetyl nitrate (PAN), an important atmospheric nitrogen oxide reservoir, can impact the level and cycling of free radicals and nitrogen compounds in the atmosphere. PAN sinks are poorly understood, highlighting the importance of elucidating the heterogeneous reaction of PAN on aerosol surfaces. Here, we report for the first time the uptake behavior, kinetics, and potential mechanism of PAN uptake on real-world aerosol PM2.5 using a flow tube system. The uptake coefficients (γ) of PAN increased non-linearly from (1.5 ± 0.7) × 10-5 at 0% relative humidity (RH) to (9.3 ± 2.0) × 10-5 at 80% RH. The γ decrease with increasing initial PAN concentration is consistent with the Langmuir-Hinshelwood mechanism. Organic components of aerosols may promote heterogeneous loss of PAN through redox reactions. Higher γ occurs with higher water content, lower pH, and lower ionic strength in the aqueous phase of aerosols. The present study suggests that heterogeneous reaction of PAN on ambient aerosols plays a non-negligible role in the atmospheric PAN budget and provides new insights into the role of PAN in promoting atmospheric oxidation capacity during hazy periods with cold and wet weather conditions.


Subject(s)
Air Pollutants , Peracetic Acid , Aerosols/chemistry , Air Pollutants/analysis , Atmosphere/chemistry , Particulate Matter/analysis , Peracetic Acid/analogs & derivatives , Peracetic Acid/analysis
3.
J Environ Sci (China) ; 114: 221-232, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35459488

ABSTRACT

As a secondary pollutant of photochemical pollution, peroxyacetyl nitrate (PAN) has attracted a close attention. A four-month campaign was conducted at a rural site in North China Plain (NCP) including the measurement of PAN, O3, NOx, PM2.5, oxygenated volatile organic compounds (OVOCs), photolysis rate constants of NO2 and O3 and meteorological parameters to investigate the wintertime characterization of photochemistry from November 2018 to February 2019. The results showed that the maximum and mean values of PAN were 4.38 and 0.93 ± 0.67 ppbv during the campaign, respectively. The PAN under different PM2.5 concentrations from below 75 µg/m3 up to 250 µg/m3, showed different diurnal variation and formation rate. In the PM2.5 concentration range of above 250 µg/m3, PAN had the largest daily mean value of 0.64 ppbv and the fastest production rate of 0.33 ppbv/hr. From the perspective of PAN's production mechanism, the light intensity and precursors concentrations under different PM2.5 pollution levels indicated that there were sufficient light intensity and high volatile organic compounds (VOCs) and NOx precursors concentration even under severe pollution level to generate a large amount of PAN. Moreover, the bimodal staggering phenomenon of PAN and PM2.5 provided a basis that PAN might aggravate haze through secondary organic aerosols (SOA) formation.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , Attention , China , Environmental Monitoring , Particulate Matter/analysis , Peracetic Acid/analogs & derivatives , Seasons , Volatile Organic Compounds/analysis
4.
Molecules ; 26(16)2021 Aug 08.
Article in English | MEDLINE | ID: mdl-34443388

ABSTRACT

The purpose of this study was to examine the free radical scavenging and antioxidant activities of ellagic acid (EA) and ellagic acid peracetate (EAPA) by measuring their reactions with the radicals, 2,2-diphenyl-1-picrylhydrazyl and galvinoxyl using EPR spectroscopy. We have also evaluated the influence of EA and EAPA on the ROS production in L-6 myoblasts and rat liver microsomal lipid peroxidation catalyzed by NADPH. The results obtained clearly indicated that EA has tremendous ability to scavenge free radicals, even at concentration of 1 µM. Interestingly even in the absence of esterase, EAPA, the acetylated product of EA, was also found to be a good scavenger but at a relatively slower rate. Kinetic studies revealed that both EA and EAPA have ability to scavenge free radicals at the concentrations of 1 µM over extended periods of time. In cellular systems, EA and EAPA were found to have similar potentials for the inhibition of ROS production in L-6 myoblasts and NADPH-dependent catalyzed microsomal lipid peroxidation.


Subject(s)
Electron Spin Resonance Spectroscopy , Ellagic Acid/analogs & derivatives , Ellagic Acid/pharmacology , Free Radical Scavengers/pharmacology , Peracetic Acid/analogs & derivatives , Animals , Kinetics , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Peracetic Acid/pharmacology , Rats
5.
Environ Sci Technol ; 55(6): 3568-3581, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33656863

ABSTRACT

Peroxyacetyl nitrate (PAN) is an important indicator for photochemical pollution, formed similar to ozone in the photochemistry of certain volatile organic compounds (VOCs) in the presence of nitrogen oxides, and has displayed surprisingly high concentrations during wintertime that were better correlated to particulate rather than ozone concentrations, for which the reasons remained unknown. In this study, wintertime observations of PAN, VOCs, PM2.5, HONO, and various trace gases were investigated to find the relationship between aerosols and wintertime PAN formation. Wintertime photochemical pollution was affirmed by the high PAN concentrations (average: 1.2 ± 1.1 ppb, maximum: 7.1 ppb), despite low ozone concentrations. PAN concentrations were determined by its oxygenated VOC (OVOC) precursor concentrations and the NO/NO2 ratios and can be well parameterized based on the understanding of their chemical relationship. Data analysis and box modeling results suggest that PAN formation was mostly contributed by VOC aging processes involving OH oxidation or photolysis rather than ozonolysis pathways. Heterogeneous reactions on aerosols have supplied key photochemical oxidants such as HONO, which produced OH radicals upon photolysis, promoting OVOC formation and thereby enhancing PAN production, explaining the observed PM2.5-OVOC-PAN intercorrelation. In turn, parts of these OVOCs might participate in the formation of secondary organic aerosol, further aggravating haze pollution as a feedback. Low wintertime temperatures enable the long-range transport of PAN to downwind regions, and how that will impact their oxidation capacity and photochemical pollution requires further assessment in future studies.


Subject(s)
Air Pollutants , Ozone , Aerosols , Air Pollutants/analysis , China , Environmental Monitoring , Ozone/analysis , Peracetic Acid/analogs & derivatives
6.
Environ Pollut ; 274: 116570, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33529905

ABSTRACT

Atmospheric peroxyacetyl nitrate (PAN) and ozone (O3) are two typical indicators for photochemical pollution that have adverse effects on the ecosystem and human health. Observation networks for these pollutants have been expanding in developed regions of China, such as North China Plain (NCP) and Pearl River Delta (PRD), but are sparse in Yangtze River Delta (YRD), meaning their concentration and influencing factors remain poorly understood. Here, we performed a one-year measurement of atmospheric PAN, O3, particulate matter with aerodynamic diameter smaller than 2.5 µm (PM2.5), nitrogen oxides (NOx), carbon monoxide (CO), and meteorological parameters from December 2016 to November 2017 in Shanghai. Overall, high hourly maximum PAN and O3 were found to be 7.0 and 185 ppbv in summer, 6.2 and 146 ppbv in autumn, 5.8 and 137 ppbv in spring, and 6.0 and 76.7 ppbv in winter, respectively. Continental air masses probably carried atmospheric pollutants to the sampling site, while frequent maritime winds brought in less polluted air masses. Furthermore, positive correlations (R: 0.72-0.85) between PAN and O3 were found in summer, indicating a predominant role of photochemistry in their formation. Unlike in summer, weak or no correlations between PAN and O3 were featured during the other seasons, especially in winter, due to their different loss pathways. Unexpectedly, positive correlations between PAN and PM2.5 were found in all seasons. During summer, moderate correlation could be attributed to the strong photochemistry acting as a common driver in the formation of secondary aerosols and PAN. During winter, high PM2.5 might promote PAN production through HONO production, hence resulting in a good positive correlation. Additionally, the loss of PAN by thermal decomposition (TPAN) only accounted for a small fraction (ca. 1%) of the total (PAN + TPAN) during a typical winter episode, while it significantly reached 14.4 ppbv (71.1% of the total) in summer.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/analysis , China , Ecosystem , Environmental Monitoring , Humans , Ozone/analysis , Particulate Matter/analysis , Peracetic Acid/analogs & derivatives , Seasons
7.
J Environ Sci (China) ; 94: 81-87, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32563490

ABSTRACT

As an important secondary photochemical pollutant, peroxyacetyl nitrate (PAN) has been studied over decades, yet its simulations usually underestimate the corresponding observations, especially in polluted areas. Recent observations in north China found unusually high concentrations of PAN during wintertime heavy haze events, but the current model still cannot reproduce the observations, and researchers speculated that nitrous acid (HONO) played a key role in PAN formation. For the first time we systematically assessed the impact of potential HONO sources on PAN formation mechanisms in eastern China using the Weather Research and Forecasting/Chemistry (WRF-Chem) model in February of 2017. The results showed that the potential HONO sources significantly improved the PAN simulations, remarkably accelerated the ROx (sum of hydroxyl, hydroperoxyl, and organic peroxy radicals) cycles, and resulted in 80%-150% enhancements of PAN near the ground in the coastal areas of eastern China and 10%-50% enhancements in the areas around 35-40°N within 3 km during a heavy haze period. The direct precursors of PAN were aldehyde and methylglyoxal, and the primary precursors of PAN were alkenes with C > 3, xylenes, propene and toluene. The above results suggest that the potential HONO sources should be considered in regional and global chemical transport models when conducting PAN studies.


Subject(s)
Air Pollutants/analysis , China , Peracetic Acid/analogs & derivatives , Peracetic Acid/analysis , Seasons
8.
Environ Pollut ; 252(Pt B): 1910-1919, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31227349

ABSTRACT

Peroxyacetyl nitrate (PAN) is an important reservoir of atmospheric nitrogen, modulating reactive nitrogen cycle and ozone (O3) formation. To understand the origins of PAN, a field measurement was conducted at Tung Chung site (TC) in suburban Hong Kong from October to November 2016. The average level of PAN was 0.63 ±â€¯0.05 ppbv, with a maximum of 7.30 ppbv. Higher PAN/O3 ratio (0.043-0.058) was captured on episodes, i.e. when hourly maximum O3 exceeded 80 ppbv, than on non-episodes (0.01), since O3 production was less efficient than PAN when there was an elevation of precursors (i.e. volatile organic compounds (VOCs) and nitrogen oxide (NOx)). Model simulations revealed that oxidations of acetaldehyde (65.3 ±â€¯2.3%), methylglyoxal (MGLY, 12.7 ±â€¯1.2%) and other oxygenated VOCs (OVOCs) (8.0 ±â€¯0.6%), and radical cycling (12.2 ±â€¯0.8%) were the major production pathways of peroxyacetyl (PA) radical, while local PAN formation was controlled by both VOCs and nitrogen dioxide (NO2). Among all VOC species, carbonyls made the highest contribution (59%) to PAN formation, followed by aromatics (26%) and biogenic VOCs (BVOCs) (10%) through direct oxidation/decomposition. Besides, active VOCs (i.e. carbonyls, aromatics, BVOCs and alkenes/alkynes) could stimulate hydroxyl (OH) production, thus indirectly facilitating the PAN formation. Apart from primary emissions, carbonyls were also generated from oxidation of first-generation precursors, i.e., hydrocarbons, of which xylenes contributed the most to PAN production. Furthermore, PAN formation suppressed local O3 formation at a rate of 2.84 ppbv/ppbv, when NO2, OH and hydroperoxy (HO2) levels decreased and nitrogen monoxide (NO) value enhanced. Namely, O3 was reduced by 2.84 ppbv per ppbv PAN formation. Net O3 production rate was weakened (∼36%) due to PAN photochemistry, so as each individual production and loss pathway. The findings advanced our knowledge of atmospheric PAN and its impact on O3 production.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Environmental Pollution/analysis , Ozone/analysis , Peracetic Acid/analogs & derivatives , Volatile Organic Compounds/analysis , Acetaldehyde/chemistry , Hong Kong , Hydrocarbons/analysis , Hydroxyl Radical/analysis , Nitrogen Oxides/analysis , Oxidation-Reduction , Peracetic Acid/analysis , Photochemistry , Pyruvaldehyde/chemistry , Xylenes/analysis
9.
Environ Pollut ; 244: 379-387, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30352352

ABSTRACT

Peroxyacetyl nitrate (PAN) are effective indicators of photochemical pollution, and also play an important role in regional oxidant balance. Surprisingly, in recent years, PAN have also been detected under conditions that do not favor the photochemical processes. To obtain a better understanding of the mechanisms of formation of atmospheric compound pollution, this study examined the relationships between concentrations of PAN and other pollutants (e.g., ozone [O3] and PM2.5) during a winter haze episode. The observation periods were from December 31, 2015, to February 2, 2016, and from February 19, 2016, to March 4, 2016. The maximum daily concentration of PAN during haze episodes was 4-10 times higher than that during non-haze episodes. The continuous cumulative increase in PAN concentrations was the result of a combination of photochemical production during the daytime and production based on free radical chemical reactions during the nighttime. During the haze episode, the correlation between concentrations of PAN and O3 was weak, while a significant correlation was observed between PAN and PM2.5 concentrations (R2 = 0.82). This may have been due to higher concentrations of particulate matter impairing illumination, which can then inhibit the photochemical reactions that produce PAN and O3. OH radicals can replace the role of light in PAN formation, which can cause concentrations of PAN and O3 to vary independently. During the haze episode, the ratio of PAN/O3 was around 0.3, which was much higher than that during the clean period.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Environmental Pollution/analysis , Ozone/analysis , Particulate Matter/analysis , Peracetic Acid/analogs & derivatives , Beijing , China , Hydroxyl Radical/analysis , Peracetic Acid/analysis , Seasons
10.
J Environ Sci (China) ; 77: 189-197, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30573082

ABSTRACT

Peroxyacyl nitrates (PANs) are important secondary pollutants in ground-level atmosphere. Accurate prediction of atmospheric pollutant concentrations is crucial to guide effective precautions for before and during specific pollution events. In this study, four models based on the back-propagation (BP) artificial neural network (ANN) and multiple linear regression (MLR) methods were used to predict the hourly average PAN concentrations at Peking University, Beijing, in 2014. The model inputs were atmospheric pollutant data and meteorological parameters. Model 3 using a BP-ANN based on the original variables achieved the best prediction results among the four models, with a correlation coefficient (R) of 0.7089, mean bias error of -0.0043 ppb, mean absolute error of 0.4836 ppb, root mean squared error of 0.5320 ppb, and Willmott's index of agreement of 0.8214. Based on a comparison of the performance indices of the MLR and BP-ANN models, we concluded that the BP-ANN model was able to capture the highly non-linear relationships between PAN concentration and the conventional atmospheric pollutant and meteorological parameters, providing more accurate results than the traditional MLR models did, with a markedly higher goodness of R. The selected meteorological and atmospheric pollutant parameters described a sufficient amount of PAN variation, and thus provided satisfactory prediction results. More specifically, the BP-ANN model performed very well for capturing the variation pattern when PAN concentrations were low. The findings of this study address some of the existing knowledge gaps in this research field and provide a theoretical basis for future regional air pollution control.


Subject(s)
Environmental Monitoring , Peracetic Acid/analogs & derivatives , Beijing , Humidity , Linear Models , Neural Networks, Computer , Particulate Matter/analysis , Peracetic Acid/analysis , Temperature , Wind
11.
J Environ Sci (China) ; 71: 249-260, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30195683

ABSTRACT

Peroxyacetyl nitrate (PAN), as a major secondary pollutant, has gained increasing worldwide attentions, but relevant studies in China are still quite limited. During winter of 2015 to summer of 2016, the ambient levels of PAN were measured continuously by an automatic gas chromatograph equipped with an electron capture detector (GC-ECD) analyzer at an urban site in Jinan (China), with related parameters including concentrations of O3, NO, NO2, PM2.5, HONO, the photolysis rate constant of NO2 and meteorological factors observed concurrently. The mean and maximum values of PAN concentration were (1.89 ±â€¯1.42) and 9.61 ppbv respectively in winter, and (2.54 ±â€¯1.44) and 13.47 ppbv respectively in summer. Unusually high levels of PAN were observed during severe haze episodes in winter, and the formation mechanisms of them were emphatically discussed. Study showed that high levels of PAN in winter were mainly caused by local accumulation and strong photochemical reactions during haze episodes, while mass transport played only a minor role. Accelerated photochemical reactions (compared to winter days without haze) during haze episodes were deduced by the higher concentrations but shorter lifetimes of PAN, which was further supported by the sufficient solar radiation in the photolysis band along with the high concentrations of precursors (NO2, VOCs) and HONO during haze episodes. In addition, significant PAN accumulation during calm weather of haze episodes was verified by meteorological data.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Peracetic Acid/analogs & derivatives , China , Meteorological Concepts , Particulate Matter/analysis , Peracetic Acid/analysis , Seasons
12.
Environ Sci Pollut Res Int ; 25(23): 23143-23156, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29860696

ABSTRACT

Atmospheric concentrations of peroxyacetyl nitrate (PAN) were measured in Ziyang in December 2012 to provide basic knowledge of PAN in the Chengyu district and offer recommendations for air pollution management. The PAN pollution was relatively severe in Ziyang in winter, with the maximum and average PAN concentrations of 1.61 and 0.55 ppbv, respectively, and a typical single-peak diurnal trend in PAN and theoretical PAN lost by thermal decomposition (TPAN) were observed. PAN and O3 concentrations were correlated (R2 = 0.52) and the ratios of daily maximum PAN to O3 ([PAN]/[O3] ratio) ranged from 0.013 to 0.108, with an average of 0.038. Both acetone and methyl ethyl ketone (MEK) were essential for producing the acetylperoxy radicals (PA) and subsequently PAN in Ziyang in winter, and PAN concentrations at the sampling site exhibited more sensitivity to volatile organic compound (VOC) concentrations than nitrogen oxide (NOx) levels. Therefore, management should focus on reducing VOCs emissions, in particular those that produce acetone and MEK through photolysis and oxidizing reactions. In addition, the influence of relative humidity (RH) on the heterogeneous reactions between PAN and PM2.5 in the atmospheric environment may have led to the strong correlation between observed PM2.5 and PAN in Ziyang in winter. Furthermore, a typical air pollution event was observed on 17-18 December 2012, which Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and PSCF simulations suggest that it was caused by the local formation and the regional transport of polluted air masses from Hanzhong, Nanchong, and Chengdu.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Peracetic Acid/analogs & derivatives , Air Pollution/analysis , Air Pollution/prevention & control , China , Peracetic Acid/analysis , Seasons
13.
Chemosphere ; 177: 339-346, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28319888

ABSTRACT

The interaction between photochemical oxidants and aerosol particles has been examined in previous atmospheric pollution studies. The heterogeneous reaction can affect the concentration of gases and free radicals, as well as the morphology and properties of particles. In this report, the interaction between the photochemical oxidant peroxyacetyl nitrate (PAN) and soot particles was investigated using a flow tube system. We used real-time online monitoring equipment to track changes in PAN concentrations. Substances on the soot surface were detected using ion chromatography (IC), x-ray photoelectron spectroscopy (XPS), and other surface analysis methods. At 295 K, the upper and lower limits of the initial uptake coefficients were 1.28 × 10-5 and 9.16 × 10-9, respectively. The heterogeneous reaction of PAN on soot was a first-order reaction to PAN under both dry and wet conditions. The products formed on soot included CH3COO-, HCOO-, NO2-, and NO3-. With an increase in relative humidity, the production of all species decreased and the relative amounts changed.


Subject(s)
Aerosols/analysis , Oxidants, Photochemical/analysis , Peracetic Acid/analogs & derivatives , Soot/analysis , Chromatography, Ion Exchange , Gases/analysis , Ions , Nitrogen/chemistry , Peracetic Acid/analysis , Spectrometry, X-Ray Emission , Temperature
14.
J Environ Sci (China) ; 26(10): 2007-17, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25288544

ABSTRACT

Measurements of peroxyacetyl nitrate (PAN) were made at a Beijing urban site each August from 2005 to 2009. Over this 5-year period, the average PAN concentration for August in each year increased from 3 (2005) to 11.7µg/m(3) (2007); however, it decreased rapidly in 2008 (4.1µg/m(3)). Generally, the variation over the 5 years showed a rise in the first part of the study period, followed by a decline. We considered two categories of local and regional air masses in this study, which revealed that the PAN concentration in Beijing was affected mainly by southeastern air masses. The August PAN variation was influenced predominantly by local air masses in 2005, but by 2009 regional air masses had become more important. This study showed the level and variation of PAN in the month of August in 5 consecutive years for the first time, and proved that control measures are useful in decreasing photochemical pollution; hence, these measures are probably feasible for other megacities too. Furthermore, this method of analyzing regional and local impacts might be useful for other studies as well.


Subject(s)
Air Pollutants/analysis , Peracetic Acid/analogs & derivatives , China , Peracetic Acid/analysis
15.
Environ Pollut ; 195: 39-47, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25194270

ABSTRACT

Peroxy acetyl nitrate (PAN) is a key component of photochemical smog and plays an important role in atmospheric chemistry. Though it has been known that PAN is produced via reactions of nitrogen oxides (NOx) with some volatile organic compounds (VOCs), it is difficult to quantify the contributions of individual precursor species. Here we use an explicit photochemical model--Master Chemical Mechanism (MCM) model--to dissect PAN formation and identify principal precursors, by analyzing measurements made in Beijing in summer 2008. PAN production was sensitive to both NOx and VOCs. Isoprene was the predominant VOC precursor at suburb with biogenic impact, whilst anthropogenic hydrocarbons dominated at downtown. PAN production was attributable to a relatively small class of compounds including NOx, xylenes, trimethylbenzenes, trans/cis-2-butenes, toluene, and propene. MCM can advance understanding of PAN photochemistry to a species level, and provide more relevant recommendations for mitigating photochemical pollution in large cities.


Subject(s)
Air Pollutants/analysis , Models, Chemical , Peracetic Acid/analogs & derivatives , Volatile Organic Compounds/analysis , Air Pollutants/chemistry , Cities , Peracetic Acid/analysis , Peracetic Acid/chemistry , Photochemistry , Seasons , Volatile Organic Compounds/chemistry
16.
J Environ Sci (China) ; 26(1): 65-74, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24649692

ABSTRACT

Atmospheric peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), and carbon tetrachloride (CCl4) were measured from September 2010 to August 2011 in Beijing. PAN exhibited low values from mid-autumn to early spring (October to March) with monthly average concentrations ranging from 0.28 to 0.73 ppbV, and increased from early spring to summer (March to August), ranging from 1.37-3.79 ppbV. The monthly variation of PPN was similar to PAN, with low values (below detection limit to 0.18 ppbV) from mid-autumn to early spring, and a monthly maximum in September (1.14 ppbV). The monthly variation of CCl4 was tightly related to the variation of temperature, exhibiting a minimum in winter (69.3 pptV) and a maximum of 180.6 pptV in summer. Due to weak solar intensity and short duration, PAN and O3 showed no distinct diurnal patterns from morning to night during winter, whereas for other seasons, they both exhibited maximal values in the late afternoon (ca. 15:00 to 16:00 local time) and minimal values during early morning and midnight. Good linear correlations between PAN and PPN were found in autumn (R = 0.91), spring (R = 0.94), and summer (R = 0.81), with slopes of 0.130, 0.222, and 0.133, respectively, suggesting that anthropogenic hydrocarbons dominated the photochemical formation of PANs in Beijing. Positive correlation between PAN and O3 in summer with the low slopes (deltaO3/deltaPAN) ranging from 9.92 to 18.0 indicated serious air pollution in Beijing, and strong negative correlation in winter reflected strong O3 consumption by NO titration and less thermal decompositin of PAN.


Subject(s)
Air Pollutants/analysis , Carbon Tetrachloride/analysis , Ozone/analysis , Peracetic Acid/analogs & derivatives , Peroxides/analysis , China , Cities , Peracetic Acid/analysis , Seasons
17.
J Environ Sci (China) ; 26(1): 83-96, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24649694

ABSTRACT

Previous measurements of peroxyacetyl nitrate (PAN) in Asian megacities were scarce and mainly conducted for relative short periods in summer. Here, we present and analyze the measurements of PAN, O3, NO(x), etc., made at an urban site (CMA) in Beijing from 25 January to 22 March 2010. The hourly concentration of PAN averaged 0.70 x 10(-9) mol/mol (0.23 x 10(-9) -3.51 x 10(-9) mol/mol) and was well correlated with that of NO2 but not O3, indicating that the variations of the winter concentrations of PAN and 03 in urban Beijing are decoupled with each other. Wind conditions and transport of air masses exert very significant impacts on O3, PAN, and other species. Air masses arriving at the site originated either from the boundary layer over the highly polluted N-S-W sector or from the free troposphere over the W-N sector. The descending free-tropospheric air was rich in O3, with an average PAN/O3 ratio smaller than 0.031, while the boundary layer air over the polluted sector contained higher levels of PAN and primary pollutants, with an average PAN/O3 ratio of 0.11. These facts related with transport conditions can well explain the observed PAN-O3 decoupling. Photochemical production is important to PAN in the winter over Beijing. The concentration of the peroxyacetyl (PA) radical was estimated to be in the range of 0.0014 x 10(-12) -0.0042 x 10(-12) mol/mol. The contributions of the formation reaction and thermal decomposition to PAN's variation were calculated and found to be significant even in the colder period in air over Beijing, with the production exceeding the decomposition.


Subject(s)
Air Pollutants/analysis , Peracetic Acid/analogs & derivatives , China , Cities , Peracetic Acid/analysis , Seasons , Weather
18.
Chemosphere ; 93(9): 1796-803, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23838043

ABSTRACT

Peroxyacetyl nitrate (PAN) in air has been well known as the indicator of photochemical smog due to its frequent occurrences in Seoul metropolitan area. This study was implemented to assess the distribution characteristics of atmospheric PAN in association with relevant parameters measured concurrently. During a full year period in 2011, PAN was continuously measured at hourly intervals at two monitoring sites, Gwang Jin (GJ) and Gang Seo (GS) in the megacity of Seoul, South Korea. The annual mean concentrations of PAN during the study period were 0.64±0.49 and 0.57±0.46 ppb, respectively. The seasonal trends of PAN generally exhibited dual peaks in both early spring and fall, regardless of sites. Their diurnal trends were fairly comparable to each other. There was a slight time lag (e.g., 1 h) in the peak occurrence pattern between O3 and PAN, as the latter trended to peak after the maximum UV irradiance period (16:00 (GJ) and 17:00 (GS)). The concentrations of PAN generally exhibited strong correlations with particulates. The results of this study suggest that PAN concentrations were affected sensitively by atmospheric stability, the wet deposition of NO2, wind direction, and other factors.


Subject(s)
Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring , Peracetic Acid/analogs & derivatives , Peracetic Acid/analysis , Republic of Korea , Seasons , Wind
19.
Bull Environ Contam Toxicol ; 90(4): 440-5, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23283536

ABSTRACT

Identifying the sources of volatile organic compounds (VOCs) is key issue to reducing ground-level ozone and PAN. A multivariate receptor model (Unmix) was used for the determination of the contributions of VOCs sources in Tehran-Iran. Concentrations of ambient C2-C10 VOCs were measured continuously and online at the center of Tehran city during the winter of 2012. A high correlation coefficient existed between measured and predicted values (R (2) = 0.99), indicating that the data were well modeled. Five possible VOCs source categories were identified and mobile sources such as vehicle exhaust (61 %) and fuel evaporation (12 %) more than half of the total VOC concentration. City gas and CNG sources, biogenic source, and industrial solvent source categories accounted for 17 %, 8 % and 2 % of the total VOC, respectively. Result showed Unmix for VOCs source apportionment can be used to analyze and generate air pollution control strategies and policies.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Volatile Organic Compounds/analysis , Air Pollutants/chemistry , Cities , Conservation of Natural Resources , Environmental Pollution/prevention & control , Industrial Waste , Iran , Ozone/analysis , Ozone/chemistry , Peracetic Acid/analogs & derivatives , Peracetic Acid/analysis , Peracetic Acid/chemistry , Vehicle Emissions/analysis , Volatile Organic Compounds/chemistry
20.
J Chromatogr A ; 1266: 110-5, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23107119

ABSTRACT

Gas chromatography equipped with electron capture detector (GC-ECD) has been widely used for detecting atmospheric peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN). However, to the best of our knowledge, only a few capillary columns have been adopted for separation to achieve the direct and simultaneous analysis of the two atmospheric pollutants. This paper demonstrates a novel method for directly and simultaneously measuring atmospheric carbon tetrachloride (CCl(4)), PAN, and PPN using GC-ECD with a DB-1 separation column. The responses of the GC-ECD to PAN, PPN, and CCl(4) were individually calibrated by using gas mixtures prepared via volatilization of synthesized solutions of PAN and PPN or high-purity CCl(4) reagent in a Teflon Bag. The concentrations of PAN and PPN in the synthesized solutions were quantified by ion chromatography (IC). Further calibration of the GC-ECD for PAN was conducted by in situ photochemical formation of gaseous PAN which was quantified by a NO(x) analyzer. The two calibration methods agreed well with each other, and the overall uncertainties for measuring atmospheric PAN were estimated to be ± 13% and ± 15% based on the calibrations of IC and NO(x), respectively. The detection limits (three times the signal to noise ratio) for PAN, PPN, and CCl(4) were estimated to be 22, 36, and 5 pptv (parts per trillion by volume), respectively. The atmospheric concentrations of these compounds were measured for several days in August in Beijing, and the values obtained in this study were found to be in good agreement with the data reported in the literature for Beijing using other GC-ECD methods.


Subject(s)
Air Pollutants/analysis , Carbon Tetrachloride/analysis , Chromatography, Gas/methods , Peracetic Acid/analogs & derivatives , Peroxides/analysis , Air Pollutants/chemistry , Calibration , Carbon Tetrachloride/chemistry , Chromatography, Gas/instrumentation , Limit of Detection , Peracetic Acid/analysis , Peracetic Acid/chemistry , Peroxides/chemistry , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...